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Abstract

On-board diagnostic systems play an important role in the current generation of cars and will

play an increasingly important role in the next future. The design of on-board diagnostic systems

is a challenging problem under several points of view. In this paper we discuss the experience

we made on such a problem within the VMBD project. In particular, we discuss an approach

which tries to reconcile two goals: satisfying all the requirements and constraints imposed by

the on-board application, and exploiting the advantages of the model-based approach as much

as possible. The approach is based on qualitative deviation models for the automatic derivation

of on-board diagnostics based on decision trees. In the paper we use a speci�c application,

the Common Rail fuel delivery system, as a concrete example, brie
y discussing the on-board

diagnostics we designed for such a system and its prototype implementation and demonstration.

1 Introduction

The aim of this paper is to discuss the experience we made, within the VMBD project, on the

design of on-board diagnostic systems for automotive applications. VMBD aims at demonstrating

the utility of model-based diagnosis in the automotive domain for both on-board and o�-board

� This work was partially supported by the European Commission, DG XII (project BE 95/2128, \VMBD").
VMBD (Vehicle Model-Based Diagnosis) is a Brite-Euram project involving the following partners: Daimler Benz,
Centro Ricerche Fiat, Volvo, Bosch, Magneti Marelli, Genrad, Dassault Electronique, Universit�a di Torino, Universit�e
Paris XIII (Paris Nord), University of Wales at Aberystwyth.
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diagnosis. This goal has been achieved through the de�nition of a general formalism for building a

library of (qualitative) models of components, the de�nition of an architecture for o�-board and on-

board diagnostic problem solving, and the experimentation on three guiding applications. Within

the VMBD project, our group mainly focused on on-board diagnostic problem solving, which is

interesting under several points of view. First of all, there is a �xed set of sensors, and tests

can hardly be performed. Further, the on-board context imposes speci�c hardware requirements

(memory and computing power) on the design of the diagnostic system. However, the response

time should be short, especially for safety critical systems, and should concentrate on taking the

appropriate action, without necessarily identifying the fault. Finally, systems to be diagnosed on-

board are in almost all cases dynamic feedback systems with an active control which is in most cases

performed by the ECU (Electronic Control Unit) software, which can often compensate for faults.

Thus, these systems are a challenging application for state-of-the-art model-based diagnostic

techniques. In the paper we analyse how the requirements sketched above can be taken into consid-

eration in the design of a diagnostic architecture for on-board systems with the following goals:

1. producing a diagnostic system that can be conceivably used on-board, given the technologies

that will be feasible on cars in the next few years;

2. exploiting the advantages of the model-based approach as much as possible.

As a running example we use one of the guiding applications in the VMBD project: the Common

Rail fuel delivery system. It has all the features discussed above (safety critical, real time recovery,

dynamic feedback with active control) and is interesting for both on-board diagnosis (performing

recovery actions in the presence of malfunctions) and o�-board diagnosis. Moreover, the Common

Rail involves hydraulic, electric and electronic components, which are, at least in part, similar to

those used in other systems. Thus, generic models of these components can be reused in di�erent

systems (as regards VMBD, the Common Rail has a number of common components with another

application, the Distributor Type Injection). In the paper:

1. We �rst introduce the Common Rail system used as a guiding application, and the models

based on qualitative deviations we adopted for it, motivating the suitability of this kind of

models for our goals.

2. We then discuss the diagnostic approach we adopted. In particular, we recall a simulation-

based approach to deal with dynamic behavior; we then analyse the problem of on-board

diagnosis, motivating and discussing an approach which uses the model-based system for au-

tomatically synthesizing e�cient on-board diagnostics in the form of decision trees.

3. We �nally provide an example of model-based diagnosis results used in the generation of on-

board diagnostics for the Common Rail and we sketch the prototype demonstration on board

of a Lancia car.

2 The Common Rail system

The Common Rail fuel injection system [15] for direct injection diesel engines is designed in order

to be able to control the injection pressure, as well as injection timing, which allows better engine

performance and lower noise and emissions. To this end, pressurised fuel is stored in the rail and its

pressure is controlled by the Electronic Control Unit (ECU) through a pressure regulator.

In more detail, the purpose of the main components (see �gure 1) is as follows. The high

pressure pump delivers fuel to the rail, which, together with the high pressure pipes between the high
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Figure 1: The Common Rail fuel injection system for the 5-cylinder car used for demonstration,

with an additional pressure sensor in the low pressure part. One of the 5 injectors is enlarged for

better readability.

pressure pump and the injectors, behaves as an accumulator. The pressure regulator, an over
ow

valve controlled by the ECU, varies pressure in the rail. When the driving current is increased,

the regulator closes an ori�ce. This determines a decrease of the over
owing fuel amount and a

consequent increase of the pressure in the rail. The over
owing fuel is returned to the tank.

The ECU controls the fuel injection system. The target pressure value for the fuel pressure is

determined given the engine operating conditions. If the rail pressure, measured by the pressure

sensor, deviates from the target value, the command to the pressure regulator is varied in order to

reduce the di�erence between the measured pressure and the target value. Injectors also receive

commands from the Electronic Control Unit, which computes both the amount of fuel to be injected

and injection timing, and controls a solenoid valve in each injector accordingly. In case of faults,

possible actions to be taken by the ECU are:

� limiting performances, i.e. lowering the maximum value for the rail pressure (which also limits

the achievable acceleration);

� switching to a \limp home" mode where the system variables are forced to be in idle mode.

In this way the rail pressure is low, and the engine speed is kept constant, while still allowing

the driver to reach e.g. a service bay;

� stopping the engine when some dangerous fault is suspected.

The fuel delivery subsystem has been modi�ed in the test car in the following ways:
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� A sensor in the low pressure subsystem (between the �lter and the high pressure pump) has

been introduced; it detects whether the pressure is su�cient to deliver fuel to the high pressure

pump.

� The e�ect of introducing a \virtual" (i.e., software) sensor based on engine speed has been

considered. Such a type of sensor has been developed by Centro Ricerche FIAT for torque

measurement (to detect anomalous injection amount and timing), i.e. for computing whether

a cylinder provides a signi�cantly di�erent torque with respect to other cylinders. This is a

\virtual" sensor since it provides an indirect measure based on actual measures. In principle,

there would be no need for such a concept of virtual sensor in a model-based diagnostic system;

this one, in particular, could be substituted with just the engine speed sensor and models of

combustion and of the engine dynamics. But since such models would be much more complex

than the rest, the virtual sensor abstraction has been preferred as a more viable solution.

Admittedly, this is an ad-hoc abstraction; general and principled ways of abstracting models

have not been the purpose of this work.

� Hardware has been included for introducing in the system some of the faults considered in

the models; in particular, for switching o� the electric pump in the low pressure subsystem,

for switching o� the PWM (pulse width modulation) command to the pressure regulator (so

that it remains open), or for supplying or not supplying one injector with current, so that it

remains always open, or always closed, regardless of the opening commands from the ECU.

3 Qualitative deviation models

Applying model-based diagnosis to dynamic controlled systems is one of the main focuses of research

in the �eld (e.g. [2, 5, 7, 8, 6, 14]). In [6], in particular, an approach based on qualitative deviations

has been used. The system is modeled in terms of di�erential equations that include appropriate

parameters for components, whose values correspond to di�erent (correct or faulty) behavior modes

of the component. From these equations, corresponding equations for qualitative deviations are

derived:

� for each variable x, its deviation �x(t) is de�ned as �x(t) = x(t)� xref (t), where xref (t) is a

reference behavior;

� from any equation A = B, the corresponding equation �A = �B is derived;

� �nally, the corresponding qualitative equation [�A] = [�B] is derived; it equates the signs of

the two deviations. There are rules for expressing this equation in terms of signs of deviations

of individual variables rather than expressions.

Similar ways for deriving qualitative models from quantitative equations have been proposed

in [4, 1]. This form of qualitative modeling has been chosen for this system, especially because

the fuel pressure in the rail is rapidly varying, according to the position of the accelerator pedal

and a number of other inputs, therefore a normal range of values cannot be given. This means

that reasoning in terms of absolute values would be very di�cult. A main problem in applying

this approach is however the choice of the reference behavior. The choice in [6], which is shown to

be useful at least in some cases, is to have a steady state as the reference behavior. We regarded

the reference behavior as the evolution of the system when all components are not faulty. As we

will discuss later, this choice has strong in
uences on the way diagnosis is activated, i.e. how it is
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Figure 2: Diagram of the model of the Common Rail.

detected that there is a fault in the system. The model used for our experiments is shown in the

block diagram in �gure 2; some simpli�cations have been done with respect to a model that would

be derived from models of individual components:

� the low pressure part of the system has been abstracted to a single component; similarly for

the rail and the high pressure pipes;

� the \torque measurement" virtual sensor has been attached directly as an output to the injector

component, rather than introducing the engine component.

Variable names on the arcs correspond to pairs of interface variables of components, which are

imposed to be equal by the connection. The meaning of such variables is the following:

� f lowp: 
ow from the low pressure subsystem (into the high pressure pump)

� p lowp: pressure in the low pressure subsystem

� lowp obs: sensor reading for the low pressure subsystem

� f pump: out
ow of the high pressure pump

� p rail: pressure in the rail

� p obs: reading of the pressure sensor in the rail

� PWM : actuation command to the pressure regulator

� f pr: 
ow through the pressure regulator

� f inj: 
ow through the injectors
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� tm: torque measurement (virtual sensor)

As an example of qualitative deviation modeling, the following qualitative deviation equation is

included in the model of the high pressure pipes and rail:

@�p rail = [�f pump]� [�f pr]� [�f inj] � [�f leak]

where:

� f leak is the 
ow through possible leaks; it is a parameter of the component and its reference

value is 0; the \ok" mode for the component imposes [�f leak] = 0, that is, there are no leaks,

while the only fault mode considered for the component, \leaking", imposes [�f leak] = + ;

� @�p rail is the derivative of the deviation (or, equivalently, the deviation of the derivative)

of the rail pressure. The equation implies that if the balance of 
ows becomes di�erent (e.g.

smaller) from the expected one (e.g., due to a smaller- than-expected in
ow from the pump,

or a higher-than-expected out
ow through the regulator, or the injectors, or a leak), then the

derivative of the rail pressure deviates (e.g. becomes smaller). This will make the rail pressure

itself deviate (e.g. become smaller) with respect to the expected trend.

The following list of fault modes (from the system FMEA) is considered. The high pressure

pump (hp pump) has fault modes blocked, with obvious meaning, and insuff which means it has

a reduced e�ciency. The high pressure pipes and rail (hp pipes rail) have leak as the only fault

mode. The pressure regulator (p regulator) has the fault modes blocked closed and blocked open.

The injectors have fault modes blocked open and blocked closed, as well as recycle low and recycle

high which correspond to an abnormal amount of fuel returned to the tank (part of the fuel 
owing

through the injectors is in fact going back to the tank). The low pressure subsystem (lp system)

has the only fault mode insuff which means it does not deliver enough fuel; this includes a fault of

the electric fuel pump. For the sensor in the low pressure system no fault modes are considered, for

the sensor in the high pressure part, the faults low, high and blocked are considered. Usually, sensor

faults can be identi�ed by an implausible sensor reading, i.e. through a range check. This could be

modeled introducing additional qualitative values for deviations, but in the running example it has

not been done for the sake of simplicity (as a consequence, in the diagnostic results discriminating

sensor faults from some other faults will not be possible).

4 Diagnostic strategies

As we noticed before, we are interested in both o�-board and on-board diagnosis. While o�-board

diagnosis can take full advantage of the model-based approach, on-board diagnosis requires some

further considerations and taking into account some important practical constraints. First of all,

in the on-board case the diagnostic system must react promptly to anomalies and must run fast

in order to interpret the anomalies and, which is most important, in order to take an appropriate

recovery action. This means also that the on-board diagnostics should be focused only on performing

recovery actions, rather than on the actual isolation of the fault(s). However, keeping track of more

detailed information about the fault(s) that occurred can be extremely important, as it is a valuable

information to be passed to the diagnostic system that will be used in the workshop to actually

locate and identify the fault. Moreover, only a few measurements can be available on-board and the

possibility of performing tests/probes is very limited. Finally, even though integrating the diagnostic

system within the ECU is not one of the goals of VMBD, we must build a diagnostic system that
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takes into account the kind of hardware that is available on board (or that will be presumably

available in the next years). For example, the total amount of memory available on the ECU (for

both control and diagnosis) of the test car is 64K. Therefore, we must reconcile two goals that are,

at least partially, con
icting:

1. the aim of showing that the model-based technology provides interesting advantages and can

be exploited and have an impact also for on-board applications;

2. the constraint of not requiring a major revolution in the hardware (and software) technologies

currently used on-board.

Such requirements show that the direct adoption of model-based diagnosis on board can be prob-

lematic. Moreover, using the full power of the model-based approach on board could be unnecessary,

especially as regards selecting measurements and tests, since little space for performing additional

measurements and tests is available.

The on-board diagnostic task can be better performed using simpler technologies, such as \pattern-

action" rules or decision trees. Such technologies in fact can be easily implemented on current ECUs

and could thus be practically used immediately. However, we believe that the model-based approach

can nevertheless play a fundamental role in automatically synthesizing the simpler knowledge base

and diagnostic strategy to be implemented on-board.

In the two following sections we discuss the de�nition of diagnosis for dynamic systems we

adopted and how such a de�nition can be exploited for compiling the on-board diagnostic system.

5 State-based and simulation-based diagnosis of dynamic sys-

tems

Several alternatives have been proposed for the diagnosis of dynamic systems. In [6] a case study is

shown where a dynamic system can be diagnosed using pure state-based diagnosis, i.e. reasoning

on single states of the system rather than on transitions of the system from one state to another.

Moreover, [14] presents some general conditions that ensure the equivalence of state-based and

simulation-based diagnosis.

If there are observations on a single qualitative state, state-based diagnosis reduces to imposing

the hypothesized fault to be consistent with such a set of observations. However, as shown in [16],

in a di�erent context, i.e. using a di�erent interpretation of deviations and di�erent assumptions on

which deviations are observable, state-based diagnosis is too weak. This also holds for the test case

considered in this paper: for some combinations of observations (in particular, the two cases where

the only observed deviation is a positive or negative deviation of the rail pressure) we have that:

� Nearly all the single faults are consistent with the observations;

� Even the \ok" mode for all components is consistent with the observations.

The former issue alone would make diagnosis almost useless; the latter is even worse. In fact, the

strategy of a typical diagnostic algorithm could start by looking for con
icts in the set of assumptions

that all components are in the ok mode, and in this case it would not �nd anything. In general, any

diagnostic algorithm based on a preference for, at least, minimal diagnoses, would conclude that the

best explanation here is that the system is working. There would be an inconsistency with fault

detection which activated diagnosis based on the observation that something was going wrong.
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Figure 3: Simulation-based diagnosis.

In [16] a simulation-based de�nition is used which take into account the discontinuity in the

behavior associated with abrupt faults, i.e. the sudden transition of a component from the correct

mode of behavior to a faulty behavior. Given additional knowledge on causality in the system,

reasoning on such transitions and using simulation can lead to reducing the set of state-based

diagnoses, under increasingly restrictive assumptions on the observability of the system, i.e. on fault

detection.

The assumptions on fault detection are important. Di�erently from [6], we assumed as a reference

behavior the correct behavior of the system; that is, a deviation should be detected (and then

diagnosis activated) when the system deviates from its expected behavior. But, given noise in

measurements and imprecise knowledge about the quantitative behavior of the system under correct

behavior, it cannot be assumed that arbitrarily small deviations can be detected. Therefore some

assumptions must be done, based on observation on the real system, on the relative speed on which

deviations of di�erent variables can be detected.

The simulation-based approach in [16] has been used in the case study of the Common Rail

system, and, as we will see in section 7, it provides better diagnosis results.

The approach can be summarized as follows. Given the set of observations OBS for such a state,

the consistency of a mode assignment F with OBS (i.e. its being a state-based diagnosis for the

observations) is not su�cient to consider F a diagnosis. In fact, it is also imposed that this state

(Sn in �gure 3) must be reachable from an initial state (S0) where all components are "ok" and all

deviations are zero, through a sequence of states satisfying the following conditions:

� The �rst state (S1) derives from causal knowledge about the system that gives the result of

\injecting" the fault F into the initial state. For example, consider the sample equation given

above for the rail component: @�p rail = [�f pump]� [�f pr]� [�f inj]� [�f leak] If the

rail starts leaking, i.e. the value of [�f leak] changes from 0 (in S0) to positive (in S1), some

other change must occur in order for the equation to hold in S1; but due to the causality in

the system, the only change that can occur in the �rst state is @�p rail becoming negative,

which will make [�p rail] negative (i.e. the rail pressure smaller than expected) in S2.

Changes to the other variables will occur later due to feedback in the system: in fact, 
ows

depend on pressure, and therefore they will actually change (or, better, deviate from their

expected value), but only after the pressure itself deviates. Note that 
ows depend on pressure

both \naturally" and due to the pressure control system: the ECU will command the pressure
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regulator to close more than it should (and then reduce the out
ow) when the pressure (read

through the pressure sensor) deviates negatively.

� The subsequent states, up to the �nal state (Sn) consistent with the observations, are each

one a successor state of the previous one according to qualitative simulation.

� The sequence S1; : : : ; Sn�1 cannot contain qualitative states with deviations that would have

been detected before the one (or ones) that actually activated diagnosis. What this actually

means depends on the assumptions on fault detection. In principle, it could mean that no

deviation of observable variables should occur in S1; : : : ; Sn�1. In practice, this strong con-

dition should be relaxed, at least to allow in the sequence qualitative states with observable

deviations if they are states that only hold for a time point and not for an interval. An example

of such a state is the one mentioned above where @�p rail is negative but [�p rail] is zero.

Moreover, since detecting deviations requires elaboration of actual data, the time necessary

for detecting deviations of di�erent variables may be di�erent.

For a formal description the reader is referred to [16].

6 Compiling on-board diagnostics

We already discussed the problems that have to be faced in the design of on-board diagnostic systems

and we motivated the choice of precompiling knowledge for the on-board system.

In this section we discuss in more detail how the compilation can be performed taking advantage

of the model-based diagnostic approach discussed in the previous section. Examples will be provided

in the next section. As we noticed before, the basic type of knowledge needed in the on-board system

is a set of associations between patterns of values of observable parameters and recovery actions.

We decided to implement such associations and the classi�cation process to be used for selecting

the best action in a given situation as decision trees. In fact, a decision tree interpreter can be

implemented very e�ciently and easily on any hardware support, using little memory: therefore,

these methodologies could be easily used on current ECUs. Moreover, there are well known and

established algorithms for building trees from examples (see e.g. algorithms such as ID3 [12]). In

our case an example is an association between a pattern of values of the observable parameters and

the corresponding action (and diagnoses). What is most interesting is that the set of examples can

be produced automatically using a diagnostic engine that is directly based on models, and could be

the same one used for o�-board diagnosis. We thus have the following scheme for the generation of

the on-board diagnostic system:

1. Determine a set of signi�cant cases that must be faced on-board. In case the number of

parameters and the set of qualitative values of the parameters are small, one may even consider

an exhaustive set of cases.

2. Run the o�-board model-based diagnostic system on each one of the cases, computing the set

of candidate diagnoses for each case and the corresponding recovery action.

3. Use a learning algorithmto derive the decision trees from the examples produced in the previous

items.

Let us analyse in more detail the last step above. The input to the learning algorithm is a table

with one row for each one of the signi�cant cases selected in step (1). The columns correspond to

the observable parameters that will constitute the nodes of the decision tree; two special columns
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Observations Diagnoses Actions

�lowp obs �p obs �tm

- - 0 Lp system insuff Performance limitation

0 - 0 Pressure regulator blocked open Performance limitation

Hp pipes and rail leak Limp home

Hp pump blocked Performance limitation

Hp pump insuff Performance limitation

Sensor low Open loop

Sensor blocked Open loop

Injectors recycle high Performance limitation

0 - + Injectors blocked open Stop

0 0 - Injectors blocked closed Go

0 + 0 Pressure regulator blocked closed Stop

Sensor high Open loop

Sensor blocked Open loop

Injectors recycle low Go

Table 1: Combinations of observations with corresponding single fault diagnoses and recovery ac-

tions. The selected action is shown in boldface font.

store the decision (recovery action) and the set of candidate diagnoses for each one of the cases,

computed in step (2). The decision tree is built by selecting, at each step, the observable whose

values best discriminate between the possible decisions (a measure of the discrimination power is

computed using entropy). At the initial step the selection is made on the whole table and this leads

to selecting the observable A which is the root of the tree. Such a node has one descendant for each

possible value of A. The descendant corresponding to the value ai of A is a decision in case all the

examples in the table for which A = ai correspond to the same decision. Otherwise, a subtree is

built using as examples those for which A = ai.

The decision tree representation has some advantages with respect to other forms of associational

knowledge. In case all the values for the observations are known to the ECU, the decision tree is

anyway more compact than a lookup table. Pattern-matching rules could also be used. However,

the decision tree is better generalized to the case (which is conceivable, even if not widely used in

ECUs in the automotive domain) where some decision requires an active test to be performed. In

fact, the decision tree can provide an order on data to be used and, more importantly, the tests

are performed only when actually necessary, i.e. when values of other data are not su�cient for

discriminating between the recovery actions. Cost of tests could be used, together with entropy, to

select the best observation at each step in the tree generation.

7 An example

In this section we provide an example of the process for compiling decision trees according to the

strategy de�ned in the previous section. We consider the three following observables in the common

rail model: the rail pressure, the pressure in the low pressure subsystem and the torque measurement.

In particular, we consider the qualitative values for the deviations of these measurements, i.e.,

respectively, [�p obs], [�lowp obs] and [�tm].

We then consider (see table 1) the combination of qualitative values for these variables with

the corresponding single fault diagnoses computed with the dynamic diagnosis approach described
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before, and the recovery action corresponding to each one of the cases. Cases not listed have

no single fault diagnosis. When there is more than one candidate diagnosis associated with a

set of observations (which means that the candidates cannot be discriminated with the available

observables), the recovery action associated with the set of candidates (the one in boldface) is the

most critical one, that is the one associated with the most critical fault. The cases considered include

the 4 faults that can be arti�cially introduced in the demonstrator car, which are: lp system insuff ;

pressure regulator blocked open; injectors blocked open; injectors blocked closed. Notice that in

three cases the actual fault can be identi�ed as the only single fault diagnosis; in other cases, there

are multiple diagnoses but all of them are sensible diagnoses for the given observations.

It is important to notice that the use of the dynamic diagnosis approach outlined in a previous

section is essential to the results in table 1.

In fact, applying state-based diagnosis (in the same context, i.e. with the same interpreta-

tion of deviations) provides some unexpected solutions: e.g. for the second case in table 1, i.e.

�lowp obs = 0, �p obs = [�], �tm = 0: Pressure regulator blocked closed, Sensor high,

Injectors recycle low, and the empty diagnosis (all the components ok).

The presence of spurious diagnoses could lead to selecting an unnecessary restrictive action: in

the example, Stop would be selected instead of Limp home, because of the spurious diagnosis

Pressure regulator blocked closed.

Moreover, the fact that the \all ok" mode is consistent would contradict fault detection: some

\abnormal" observation is detected, but the system can anyway and it would be assumed to be ok

by any sensible preference criterion for diagnoses; e.g. we have used cardinality, preferring single

fault diagnoses, and this would make the \all ok" candidate the preferred diagnosis.

Given table 1, the process for compiling the decision tree produces the decision tree in �gure 4,

which indeed captures the intended behavior for the on-board diagnostic system.

It is worth noting that in this case the diagnostic system is better than the diagnostic proce-

dures currently used in the Common Rail system, which, however, cannot use the measurements of

the pressure in the low pressure system and the torque (but uses other pieces of information and

plausibility checks concerning the values of internal variables in the ECU). This is an interesting

result of the adoption of our approach since the experimentation with the model allowed us to study

the e�ect of adding additional sensors. The example shows a compromise in which better on-board

discrimination on the recovery action to be performed can be obtained with additional sensors.

Figure 4: Compiled decision tree.
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Figure 5: Equipment for the demonstrator.

8 Architecture of the demonstration system

In this section we brie
y discuss the architecture of the demonstration system described in the

previous sections (see �gure 5). For rapid prototyping (thus allowing for experiments on both

modeling and diagnostic strategy), we implemented a �rst version of the diagnostic system using

ECLiPSe, a constraint logic programming language. These kinds of languages are in fact well suited

for prototyping, and constraint propagation for simulating models can be implemented very easily.

One strategy has also been implemented in C++. As regards the generation of the on-board decision

trees we used an implementation of the standard ID3 algorithm [12].

For the demonstration, a prototype Lancia car with a pre-series 2.4 Litres Common Rail engine

has been equipped with appropriate hardware and software for data acquisition (see �gure 5). A

hardware interface (ETK) has been attached to the ECU, providing access to the controller data

bus; a protocol conversion box (MAC) and the INCA-PC software (by ETAS) make data available

on a portable PC where the on-board diagnostic system developed for VMBD runs.

We regard this system as \on-board" even if it does not run on the ECU itself; this solution

was out of the scope of the project, but it is already feasible, even given the current ECU hardware

limitations. Such a system includes:

� A module for the conversion of signals (acquired by INCA) into qualitative deviations; this

is easily done for the sensor in the low pressure part of the system, where the pressure has a
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nominal range of values, while for the pressure sensor in the high pressure part a comparison

is made on the desired pressure computed by the ECU, relying on an approximation on the

expected behavior of the actual pressure.

� The decision tree interpreter.

Experiments on the demonstrator system were successful in checking that, when one of the

faults was introduced in the system, the appropriate values for qualitative deviations were acquired.

Therefore, since table 1 contains sensible diagnoses for each case, the system can suggest the most

appropriate action.

9 Conclusions

In this paper we discussed our experience in the design of on-board diagnostic systems for automotive

domains. We analysed the peculiarities of on-board applications, discussing their requirements and

the consequences that the requirements have on the design of the diagnostic system. In doing that

we took into account a further main goal: trying to exploit as much as possible the advantages of

the model-based approach also for on-board applications. The results discussed in the paper is a

compilation-based approach: the model-based approach is used for simulating diagnostic situations;

the results of simulations (diagnoses and actions corresponding to a set of observations) are used by

a learning algorithm to derive the decision trees that will form the on-board diagnostic system.

We claim that this approach has signi�cant advantages on other ones. With respect to the

adoption of on-board model-based systems, our approach has the advantage of being close to be

implemented with current ECU technology, even for a dynamic, controlled system. With respect

to a manual generation of the decision tree (as it is currently done in many diagnostic systems),

on the other hand, we have all the advantages coming from relying on reusable models, which can

signi�cantly reduce the e�ort in generating the tree for a new system. Moreover, the experimentation

with the model-based approach can lead to studying how to improve the diagnosability of the system,

e.g. by adding extra sensors (as it is indeed shown by our example).

The idea of compiling diagnostic rules from examples has been used in other approaches, even if

with some di�erences. In [11], which shares several characteristics of our approach, models are used

for generating FMEA, which is in turn used for generating diagnostic trees for o�-board diagnosis.

Previous approaches used qualitative models for running a set of simulations and induce diagnostic

rules from the results of the simulations (see, e.g., [9, 10]). Thus there are two main di�erences with

respect to the approach presented in this paper: they run simulations of combinations of faults,

while our examples are sets of observables corresponding to the diagnostic problems to be solved

(which is more focused); they perform induction from examples while we synthesize decision trees.

A di�erent approach based on explanation based learning has been adopted in [13]: they start from

a single example and try to induce rules from the solution to the example. This, however, is a critical

step in the induction of diagnostic rules, as discussed in detail in [3].
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